GUIDANCE AND CONTROL OF AEROSPACE VEHICLES

VIII Semester: OPEN ELECTIVE -IV									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
A5AE69	OEC	L	Т	Р	С	CIA	SEE	Total	
		3	0	0	3	30	70	100	
COURSE OBJECTIVES									

The purpose of this subject is to provide the students with the theoretical background and engineering applications.

- 1. To introduce the concepts of Navigation, guidance and control
- 2. To familiarize with various ways in which aerospace vehicles are guided and controlled
- 3. The dynamic objectives which students also learn to achieve by designing flight control systems.
- 4. Familiarize with the control principles of rockets and missiles
- 5. To give Insight into the manoeuvres of the space craft

COURSE OUTCOMES:

At the end of the course the students are able to:

- 1 Formulate the navigational equations of the space vehicle
- 2 Describe the guidance of the vehicle with state feed back
- 3 Explain the automatic control and guidance of the aircraft
- 4 Evaluate the control techniques of the rockets and missiles
- 5 Describe major manoeuvres of the space aircraft.

UNIT-I	NAVIGATION					
Introduction, Basic Principles and Definitions; Dead reckoning and Position Fixing, Celestial, Radio, Inertial Navigation; Principle and Construction of Accelerometers, Mechanical Gyros and Ring Laser Gyros, Inertial Measurement Units, Navigation Equations, Sensor Error Models, Kalman Filter, Attitude Heading Reference System, GPS, Terrain Reference Navigation.						
UNIT-II	GUIDANCE					
Optimal Terminal Guidance of Interceptors, Optimal Terminal Guidance - planar and non-planar, Robust						
and Adaptive Guidance, Guidance with State Feedback, Guidance with Normal Acceleration Input,						
Minimum Energy Orbital Transfer.						
UNIT-III	GUIDANCE AND CONTROL OF AIRCRAFT					
Powered Flying Controls, Helicopter Flight Controls, Fly-by-Wire Flight Control, Control laws,						
Redundancy and Failure Survival, Digital Implementation, Fly-by-Light Flight Control, Auto Pilot, Flight						
Management Systems, Unmanned Aerial Vehicle.						
UNIT-IV	CONTROL TECHNIQUES/ CONTROL OF ROCKETS AND MISSILES					
Open-loop and Closed Loop Control Systems, Multi-variable Optimization, Optimal Control of Dynamic						
Systems, Hamiltonian and Minimum Principle and Jacobi-Bellman Equation, Linear Time-Varying						
System with Quadratic Performance Index						
UNIT-V	CONTROL OF SPACECRAFT					
Launch of Satellite/ Spacecraft, Terminal Control of Spacecraft Attitude, Optimal Single-Axis Rotation of						
Spacecraft, Multi-axis Rotational Manoeuvres of Spacecraft, Spacecraft Control Torques, Rocket						
Thrusters, Reaction Wheels, Momentum Wheels and Control Moment Gyros, Torque.						
Text Books:						

- 1. Tewari, A.—Advanced Control of Aircraft, Spacecraft and Rocketsll, John Wiley & Sons, Ltd, Chichester, UK, 2011
- 2. Nelson R. C Flight Stability and Automatic Control, SIE edition, McGraw Hill, New York, 2007.

Reference Books:

1. Noton, M. — Spacecraft navigation and Guidancell, Springer-Verlag, Germany, 1998

2. Mc. Cormic 2. B. W - Aerodynamics, Aeronautics and Flight Mechanics, Wiley India Pvt. Ltd, USA, 2010.